The chemical journey


An unexpected journey through molecules, petri dishes, and ingenuity

It is 1774. In Bowood House, an estate in the South of England, Joseph Priestley is researching different types of air. He captures gases in an inverted container and traps them inside by placing the container in a layer of water or mercury. The main question for each gas the chemist traps: does it sustain life and can it fuel a fire?

the chemical journey, chemistry of the past

As fire needs oxygen to burn, a fire in a sealed container will eventually consume all the oxygen and die out.

In testing the effects of adding a green plant to the container after all oxygen is removed, Priestley makes one of his most important observations. As long as it is exposed to sunlight, the plant ‘refreshes’ the air, making it capable of sustaining life again. Priestley observed a process we now know as photosynthesis.

Photosynthesis, as we all probably remember from our school days, is the process through which “plants use sunlight, water, and carbon dioxide to create oxygen and energy in the form of sugar.”

This knowledge, gathered over 200 hundred years ago, plays a vital role today in helping us understand how rainforests, woods and swamps capture CO2 and help us fight climate change. But, digging further, we also realise that the very same process analysed by Priestly is the basis of the creation of “biomass”, which can be used as a feedstock in bio-based chemistry.  

No scientific discipline exists in isolation and most scientific discoveries are multidisciplinary. Advancements in chemistry have often been inspired by or had a spill-over effects on physics and biology.

At the same time, no scientific discovery stands on its own . The experiments from years, decades, and even centuries ago, still live in the breakthrough discoveries of today and tomorrow. And just as the first observations of photosynthesis in 1774 were vital for addressing climate change today , the young minds working on the cutting edge of innovation today will make discoveries that might be crucial pieces to solving puzzles of the future.

Chemistry’s millionth birthday?

the chemical journey, chemistry of the past, DNA

At a minimum, the history of chemistry goes back millions of years. On that primordial earth, chemistry kickstarted life on our planet. A chemical reaction created amino acids and nucleic acids, the building blocks of proteins and DNA. Since then, chemistry has continuously shaped the world we live in.

But, while the core pillars of chemistry are still the same, our understanding of the meaning of the word “chemistry” has changed. From chemical reactions in nature to synthesising the same substances in a chemical lab, the journey has gone a long way, and there is still a long way ahead. Let’s embark on this chemical journey, from chemistry of the past to chemistry of the future and get a closer look at the great minds and their discoveries which have profoundly changed the way of we live now.

Chemistry of the past

While chemistry, as well as physics, is  inextricably intertwined with life on this planet, little was known about its processes and secrets up to a few centuries ago. But even before then, several chemical processes and reactions had been known for centuries. Indeed, it was the IV century BC when Democritus formulated for the first time an atomic theory of the universe. Let’s us also not forget that, in their quest for the philosopher stone, many alchemists fathered many (accidental) chemical discoveries. One example? We have two stories: the discovery of phosphorus and of German porcelain.

Chemical Journey - Marie Curie's quote 2

But, it wasn’t until 1615 that Jean Beguin published the first ever chemical equation. These diagrams showed the result of reactions in with two or more reagents, the substance or compound added to a system to cause a chemical reaction.

Building on the crucial work done by chemistry pioneers like Beguin and Priestly, Boyle and Lavoisier, the rate of innovations and discovery drastically sped up in the last two centuries.

Chemical journey - Timeline
Click to enlarge the picture

Science improving life

Both as a fundamental science and as an applied science, chemistry holds the key to improving our lives, sometimes in unexpected ways.

Innovation in chemistry has always been a major driving force of technological progress. Just look around you. All of life’s necessities are touched by chemistry: from the device you are reading this page on, to clothing, furniture and medicines.

Fritz Haber
Nobel Prize in Chemistry in 1918.

Carl Bosch
Nobel Prize in Chemistry in 1931

Fritz Haber and Carl Bosch for example, who won a Nobel Prize in Chemistry in 1918 and in 1931 respectively. By developing a key process to produce in a cheaper and less labour intensive way the key ingredients for fertilisers, they helped supply the world with food. Or Jacobus Henricus van ‘t Hoff Jr., who discovered processes to make medicines more efficient and won the very first Nobel Prize in chemistry in 1901.

Chemistry has changed and continues to change the course of our world: from enabling us to harvest nuclear energy (Niels Bohr, Nobel Prize in Chemistry in 1922), to learning more about radiation and its effects (Marie Slodowska Curie, Nobel Prize in Chemistry in 1911)

Jacobus Henricus van ‘t Hoff
Nobel Prize in chemistry in 1901

Niels Bohr
Nobel Prize in Chemistry in 1922

However, it is clear that none of these innovations could have ever happened without some key elements. One of them is, of course, an environment that enables the most brilliant minds to emerge and work. Next to it, was, and still is, the importance to have what we call “technology neutrality” which offered them the opportunity to explore freely and break the status quo for decades to come.

Because of these great minds and their groundbreaking work, the chemical industry earned its place as a key pillar in most value chains; from feeding the world in the agricultural and food sectors, to keeping people healthy with vaccines and other medical breakthroughs. But the journey has not ended. The sector has evolved, is evolving, and will keep evolving.

And just as science and the technologies are evolving, we at Cefic are working together with the European Commission and other key stakeholders to make sure the minds of today and tomorrow have the right framework in place to discover the solutions of the future.

The generations that came before us, our generation today, and every future generation, has the potential to produce a new Curie, a new Einstein. But we do not just need to make sure they can emerge, we have to make sure their talent, their genius, tackles needs bigger than the present. Our mission today is to ensure that the bright minds around us are empowered to work on the solutions we need for a climate-neutral society. This is what Cefic does: we create a bridge between policy and industry, we outline a clear pathway that connects the discoveries of the past, the human capital of the present, and the potential of the future.

Stay tuned for more !

Our chemical journey will resume soon and you will discover more about the chemistry of today.

External sources: