Executive Summary

In the 2018 CSR/ES Roadmap, Action Area 2.6 deals with the identification of existing data available at registrants that would enable them to break down the tonnages of a substance supplied across different uses, to support the environmental part of the CSA. Moreover, such “tonnage per use” data could also help prioritise substances for further regulatory evaluation, or deprioritise substances erroneously selected. The present report gathers information on potential existing sources and methods that could be used for giving estimates on “tonnages per use”. Differences in the basic concepts, origin, scope, strengths/limitations of the methods, and the fact that most methods had been developed over time and aimed at reporting other features than mere “tonnage per use” in a REACH context, made the comparison particularly challenging. It was discovered that no single method would fit all needs and that any method to be implemented would be labour-intensive.

Tonnage information is essentially available at downstream users (DUs); transparency towards the registrant depends on the length and the complexity of the supply chain. Several other aspects might also have an impact on the development of estimation methods, including competition law and the fact that distributors are much involved in the chemical sector. Some methods were developed by sectors facing severe regulatory constraints on their substances. Investment in the development of a “tonnage per use” method might however be triggered for individual cases at different points in time of the regulatory process.

1. Introduction and background

1.1. CSR/ES Roadmap

The Chemical safety report/Exposure scenario roadmap (CSR/ES Roadmap) is a cross-stakeholder plan of actions to 2018. It builds on the experience drawn from many actors towards achieving the goals of the REACH Regulation for the safe use of chemicals. Continuous improvement and the importance of good quality information on the safe use of chemicals in the REACH chemical safety report (CSR) of registrants and the extended safety data sheet communicated in supply chains are essential. The Roadmap sets out a series of discrete Action Areas to help that process. These Action Areas form part of a rolling programme to 2018 through which good practice examples, guidance and tools will evolve by means of implementation plans.

1.2. Roadmap Action 2.6

According to the CSR/ES Roadmap, Action Area 2.6 consists in “identifying existing data available at the registrant’s level and/or sector level that would enable registrants to break down the substance tonnages supplied across different uses in order to support the environmental part of the chemical safety assessment under REACH.”
In view of the CSR/ES Roadmap Second Implementation Plan published in July 2015\(^1\), the present report (hereinafter referred to as the “Report”) includes an “information gathering on potential existing sources and methods\(^2\) that could be used as such, or as proxies, for giving estimates on tonnages per use within the supply chain”. An analysis of the essential elements that make it work was found useful and will be included here; as well as an overview on the practical means (available to registrants) to estimate the tonnage supplied to the different end-uses of their substance, with an analysis of the strengths and limitations. However, due to the variety and the complexity of supply chains, registrants should not expect to find any standard recipe or calculations here; every method has its own merits, advantages and drawbacks and should be considered accordingly.

2. General considerations and project approach

This Report was prepared by the members of the Tonnage Information Task Force\(^3\) (hereinafter referred to as the “Task Force” or “TF”). A survey was organised to retrieve available methods on “tonnages” and possibly on “tonnages per use”. However, no document – as complete it might be – can replace the efforts that the registrant would have to undertake to implement a method. The Report could only be seen as supportive information, never as a recipe or a mandatory decisionmaking trigger. Each registrant/consortium/association would have to decide whether there is sufficient incentive and potential for them to start implementing a method relevant for their specific sector; either by trying to apply one of the described methods in this report or by building their own one.

2.1. Methodology followed and methods considered for reporting tonnage per use

➢ Approach/Methodology\(^4\) followed by the TF

At the beginning of its work, the Task Force had identified methods (e.g. publicly available sources like EUROSTAT) and approaches developed by a couple of sectors. The TF then developed an approach for analysing and documenting these methods. It soon became apparent that methods were sector-specific. Most common methods aimed to provide a market overview of applications without being sufficient to target uses at substance level.

Therefore a questionnaire\(^5\) was developed, aiming at gathering potential additional methods and enabling to evaluate to what extent a certain method could be used to obtain substance-specific tonnage data for certain uses.

With the assistance of ECHA, the questionnaire was sent to the following members of the ENES community:

- Formulating DU sectors other than A.I.S.E., CEPE, ATIEL (whose methods were known upfront)

\(^2\) One of the “tonnage per use” methods developed by the sectors, as reported here. Also referred to as “approach”

\(^3\) Industry associations, sectors – Cefic, CIA, Eurométaux, essenscia, FECC, UIC, VCI and companies representing manufacturers and downstream users,

\(^4\) The process followed by the TF to retrieve and analyse methods

\(^5\) Available in appendix 2
- DU sectors representing end-users of substances as such or in mixtures (e.g. automotive industry, textile finishers)

- Sectors representing manufacturers, importers and distributors

- Single substance manufacturers having developed their individual methods to track volumes (but not to single DU companies)

- Consultants

Two additional sectors responded: FEICA and Reconsile.

Two more sectors did not share their approach with the TF for competition law reasons; or the method was currently considered under development. In both cases, respondents did not wish to publicly explain their situation.

➢ Methods considered and first observations

In view of the methodology followed, described above, the most concrete deliverable of this TF deals with the retrieval and analysis of the methods developed by the following organisations/systems: A.I.S.E, ATIEL, CEPE, Concawe, Eurometaux, eurostat, FEICA, Nordic Product Registers and Reconsile.

One of the main challenges that the TF had to overcome was the differences in the basic concepts, origin, strengths/limitations of the methods, in order to compare them in the best way possible. The fact that all methods (but one, Concawe’s) had been developed over time and were aimed at reporting other features than mere tonnage per use in a REACH context, made the task particularly challenging. It became evident relatively soon in the TF work that no single method would fit all needs. It was also discovered that any method would be time and labour-intensive (different situations may of course require different amounts of work), with the possible exception of its application in very easy and short supply chains of some sectors.

2.2. Relevancy of tonnage information

Providing “tonnage per use” information can contribute to the quality of relevant dossiers requiring it. This helps assess the realistic use pattern of a substance. It may therefore contribute to de-prioritisation of substances erroneously selected or avoid such selection upfront.

Authorities consider Action Area 2.6 very useful to support registrants in enhancing the information provided in their dossiers in view of updates and new submissions. ECHA formulates the importance of “tonnage per use” tracking for authorities for prioritising/selecting substances for further regulatory processes/measures, e.g. SVHC identification (Annex XV dossier), prioritisation for Annex XIV (Authorisation), candidates for CoRAP and compliance checks.

6 Even before REACH; sometimes decades ago.
2.3. Observations on tonnage information

After careful analysis of the situation, the TF has made the following observations:

- The tonnage information is essentially available at DUs; transparency towards the registrant depends on the length and the complexity of the supply chain. In many cases, the registrant is not informed about either the detailed use of his substance or the related tonnage; continuous portfolio changes also question a dynamic exchange of this information; some sectors are more advanced in this knowledge than others.
- There is a major difference between i) a substance developed for a dedicated use and ii) substances available in the market for ages, for which the market has developed without any or only limited involvement of the supplier.
- With regard to tracking “tonnage per use”, the most appropriate sector methods were developed by sectors facing severe regulatory constraints (e.g. under the SVHC Roadmap) on their substances.
- Despite transparency along the supply chain that is one of the objectives of the CSR/ES Roadmap, the lack of transparency driven by, for example, market factors is a reality; consequently, it could be a hurdle but also a trigger for the development of tonnage tracking methods.
- Several other aspects might also have an impact on the development of such methods, including competition law and the fact that distributors are much involved in the chemical sector.
- Market studies reporting “volumes per segment” for commercial purposes were not considered here, because members of the TF individually experienced the fact that such studies are typically not free of charge, are not designed for regulatory purposes and are not “transparent” (as they are only accessible to the organisation having bought them).

Consequently, access to relevant data might be extremely challenging, if not impossible in some situations of complex supply chains.

3. Characterisation of tonnage estimation methods

3.1. Full description of the methods

The description of the methods, based on owners’ responses to the questionnaire, can be found in annex 1.

➢ Eurometaux (p.9)

➢ ATIEL (p.10)

➢ Eurostat Prodcom (p.10)

➢ A.I.S.E. (p.11) For background tonnage, data are gathered where possible and if available from e.g. published risk assessments (EU, OECD etc), EU studies and market research sources. The tool has conservative built-in assumptions and projections for detergent uses.

➢ The figures from different sources are consolidated and subject to A.I.S.E Working Group expert judgment to derive a Factor which then projects background tonnage to an inflated, conservative value which also allows scope for future growth.
3.2. Clusterisation

As explained earlier, one of the main challenges the TF had to overcome was the differences in the basic concepts, origin, strengths/limitations of the methods, in order to compare them in the best way possible. The fact that all methods (but one, Concawe’s) have been developed over time and were aimed at reporting other features than mere tonnage per use, made the task particularly challenging.

Comparing the methods has led the TF to group them in four clusters, which will help registrants to start their analysis of reporting tonnages and uses:

➢ “True” tonnage per use tracking

The process followed by the organisations having developed “true” tonnage per use tracking is based on specific questionnaires sent either to all registrants of the substances of concern or to members of the consortium. The difference in size of the targeted addressees (M/I of “all substances” versus “substances dealt by a certain consortium”) is of course of the essence when evaluating the applicability of the method to any other sector.

These organisations have decided to report either real, non aggregated tonnages of substance per use (but well consolidated throughout all manufacturers) or generic tonnages grouped by direct/formulation/professional/industrial/consumer uses.

The difference in size of the M/I groups, in number of substances and in the subsequent consolidation/anaysis/reporting explains the difference in workload as explained by the owners themselves.

The methods have proven to be effective: the number of uses has been clarified versus the early registration phases, when the decision had led to numerous uses being covered in the CSR. The new findings resulted in a significantly smaller number of uses (for classified substances) being assessed. The allocation of tonnages (and related hazard classifications) to uses thus provided a more robust data basis for guiding the prioritisation for the SVHC Roadmap. This might result in a possible reduction of the number of substances in the scope of an assessment for further regulatory measures, e.g. SVHC identification.

➢ “Proxy” for tonnage per use

The mass flow method is the sole member of the current cluster. It was developed and applied by several Eurometaux members and provides an estimation of tonnages per use as percentage starting from overall tonnage. It is a method that has been applied to substances subject to high regulatory constraints and for which questions on uses (e.g. intermediates uses) had been posed by authorities.

It appears as interconnecting all stakeholders of the considered supply chain (including recyclers). As for the “true” tonnage method, the owner of the mass flow method claims it is very resource-intensive.

➢ **“Bottom-up” method allocating the substances to final products**

Bottom-up methods are the expression of the fact that the essential part of “tonnage per use” (actually, both “tonnage” and “use”) information lays in the hands of actors down the supply chain; and these actors have no obligation and sometimes no incentive (or even a real commercial interest against, e.g. distributors) to communicate such information up the chain.

The collected data indicate that the reported figures are often assumptions, educated guesses and worst case estimates. Therefore, uncertainty prevails, in particular if the comparison between incomparable results should lead to prioritisation among substances.

Those sectors having initiated these methods have been well organised for a long period of time; hence they have strong expert judgment at their disposal that makes it possible to elaborate surveys, launch them, send reminders, analyse results and communicate conclusions. The Tonnage TF found it difficult to imagine such methods being made available in smaller organisations. Nevertheless, the size of the association has its importance: It is estimated that the narrower the coverage, the easier the definition and the implementation of any kind of method. Moreover, some of these methods were developed for other purposes; therefore, although some aspects indubitably fit “tonnage per use” needs (e.g. widespread/widispersiveness), their applicability as to retrieving such parameters is questionable. In particular, the TF did not explore whether these methods meet REACH requirements, should other sectors want to apply them.

In case tonnage information is reported for a group of substances (e.g. per category) by the DU, one could estimate it to be information of a certain value for the registrant who knows his substance belongs to such a “group”. Consequently, having data available on “groups of substances” could not be considered as weak as one might have thought at first glance.

➢ **Production “stats” with limited link to uses or substances**

Statistics on tonnages of products produced (but rarely substance and use-specific) could be a good starting point to be combined with other information in some sector-specific approaches. The major drawback of these figures is the absence of any direct link to REACH relevant uses (only in rare cases might a certain link be deducted from reported codes).

➢ **Assignment of methods to clusters**

<table>
<thead>
<tr>
<th>True Tonnage</th>
<th>Proxy</th>
<th>Bottom up</th>
<th>Production stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concawe, Reconsile</td>
<td>Eurométaux</td>
<td>CEPE, FEICA, ATIEL, A.I.S.E</td>
<td>Prodcom</td>
</tr>
</tbody>
</table>

4. Comparison under certain aspects

The table embedded here aims to provide a comparison of the different methods under certain of their characteristics.
5. Applicability of methods assessed to derive tonnage per use information

- A first observation must be made: although the term “methods” has been extensively used in this report, none of them can be called a method for retrieving tonnage per use.
- The approaches described in this report provide information how different sectors are prepared to handle situations where more use related data are required.
- None of them can be described as a structured set of processes or paths to be followed, with guidelines and instructions to be applied. Long-established experience surely exists for some approaches, developed for other purposes; they are based on expertise and will hence be difficult to extend to other sectors. (Even if similar expertise exists in such other sectors, the “translation” will require much involvement). Other descriptions clearly acknowledge that their “method” is not fixed but should rather be considered as “advice and recommendations”. Therefore, it was found more appropriate to conclude this Report in terms of “approaches” rather than “methods”, when applicability to other sectors will be envisaged.
- At this stage, the reader will have understood that any kind of study of data resulting from questions he might ask along the supply chain would be resource-intensive. Not only for convincing the business partners to provide the information but also to merely analyse the results of the inquiry. The purpose of this chapter, however, is to assess how the retrieved approaches could be applied in a more or less direct way to sectors other than the ones for which they were originally developed.
- It was found that none of the approaches can be applied without any further preparation work. Even the approaches best fitting with the concept of “tonnage per use” (e.g. Concawe’s) cannot be implemented without any additional work. And they are proven as being particularly labor-intensive. As a minimum, questionnaires must be developed by looking at the most appropriate questions to be asked for the considered supply chain. Additional efforts are inevitable.
- One more difficulty that a candidate-user would face is that current approaches were developed for narrow ranges of products/substances. On the one hand, this observation leaves the door open for DU sectors of similar size; on the other hand, this would prevent any kind of applicability seen from the registrant’s point of view, if he should supply numerous substances intended for even more numerous uses. Associations representing sectors of the chemical manufacturers are also found not to be in a position to develop such methods because i) these associations are not in charge of consortium management (where some tonnage data could prudently have been exchanged with greatest care regarding competition law) and ii) strict rules regarding anonymisation of statistics apply to these associations. In general, a limited number of participating companies (in whatever survey) is detrimental to the quality and the relevancy of the figures provided. Even a consortium is only responsible for the volumes manufactured by its members; such volumes might be a minor part of the real quantities placed in the European market.
- A sector wishing to develop a tonnage per use method could start thinking to:
 - Having a look on what tonnage/product (rather than “substance”) information might be available
• Estimating whether substances present in the product are consumed, transformed or passed to the end-user
• Estimating whether products/substances end up in wide-dispersiveness

Some DU sectors have developed approaches or methods for certain prioritisation purposes. These might address assessing substances, hazard, risk, volumes, wide dispersiveness (i.e. critical streams). However, such potential methods were typically developed for other purposes and from other programs than merely retrieving “tonnage per use” under REACH. Consequently, they rarely would fit new purposes without supplementary information/data and additional work out.

6. Conclusions on methods for estimating tonnages

The retrieved methods were by the majority developed by sector groups and do vary from sector to sector. It became evident during the analysis that no one method will fit all needs. It is also obvious that any method would have to be assessed regarding applicability, refinement and adaptations required for the specific case; and running the method would usually be very labour-intensive. Therefore, the investment in the development of a “tonnage per use” method might be triggered for individual cases at different points in time of the regulatory process.

The TF considers that the decision to perform such a “collection” exercise should be left in the hands of the registrant to decide whether or not it is proportionate to the consequences arising from the selection or possible deprioritisation of his substance (cf. § 2.2).

Tonnage information is essentially available at downstream users (DUs); transparency towards the registrant depends on the length and the complexity of the supply chain. Within a project under the umbrella of the joint CSR/ES Roadmap from authorities and industry a Cefic/VCI group assessed available approaches on estimating tonnages per use (report in the attachment). Despite several approaches have been developed by sectors facing severe regulatory constraints on their substances, there is no uniformly applicable method for identifying and aggregating information on tonnage per use and any method is labour-intensive. Thus, such information should never become a standard information requirement and may only be provided by industry in specific cases. Competition law and the fact that distributors are much involved in the chemical sector further limit options for identification and aggregation of such information.

Annexes:

1. Description of the Methods
2. Questionnaire sent to retrieve Tonnage per use Methods
Annex 1 : description of the methods

a. Eurometaux

Metal registrations typically cover the metal production itself and the production of related metal compounds, such as metal oxide, metal chloride... Gathering information on the “metal production and uses” means building a complex picture describing the manufacturing of the metal substance, the subsequent industrial (for example manufacturing of other metal compounds), professional and/or consumer uses (as the metal itself or metal compounds). Allocating precise tonnages per use is a challenging task. Therefore, it was found easier to identify a “mass flow” of metal and metal compounds and assign quantitative information based on the streams.

The overall tonnage for metal production is the starting point to work on the mass flow. This figure is generally very close to the real data, as based on direct inquiry from the producers. Refinements based on market assumptions are possibly needed to account for unavailable or uncertain information.

The goal of the analysis is to show where the “substance comes from” and “how it is used on the European market” and/or exported, allocating percentage estimations (and tonnages when available) at the different steps of the lifecycle (industrial, professional, consumer uses, potential service life). Such a picture provides a good overview of the exposure scenarios that can be expected, as the identified uses cannot always be directly translated into exposure/emissions or require further consideration (e.g. in case of massive forms, intermediate uses or use in articles without release).

Working on the mass flow analysis for a metal means that the entire life cycle of that metal at EU level is concerned. Within the described metal lifecycle, one can visualise what is covered by the REACH registration file. Metal mass flows already anticipate that the environmental assessment will depend on several sources for the specific metal, e.g. industrial use, product use falling under REACH, and other sources not covered by REACH. To account for the latter, when assessing the regional emissions/risk, the mass flow analysis should ideally be complemented by analyses of diffuse sources to allow the most appropriate environmental assessment and management.

To be representative and useful when it comes to prioritisation, the mass flow analysis should remain in line with changes in the EU market, therefore requiring updates. Also the consistency of the information provided on uses and aspects like ‘uses advised against’ should be checked regularly.
b. **ATIEL**

The ATIEL method is a typical “bottom-up” method allocating the substances to final products, for which market data are available. It could be considered as a proxy to “tonnage per use” collection.

The method includes a mix of real and strategic tonnage data including statistics, calculations, assumptions and extrapolations. Expert judgment seems to be essential. The learning points of the method include the recommendation to use as many sources of information as possible to find volume data and to compare data from different sources to validate the final figure. The method is not fixed. Not even the possible sources are listed. The association recommends to “not confine the search to industry and publicly available sources; volume data generated for commercial purposes can also be obtained from third party bodies”.

c. **Eurostat Prodcom**

Eurostat is the Statistical Office of the European Union (in portfolio of DG EMP). Its task is to provide the Union with statistics at European level that enable comparisons between countries and regions. Eurostat’s key role is to supply statistics to other DGs and supply the Commission and other European institutions with data so they can define, implement and analyse Community policies. Statistics on production data is one of the data bases that is provided by Eurostat and called Prodcom.

This database contains statistics on production of manufactured goods. Hence, by definition Prodcom is a product-related database; Prodcom as such is neither substance-specific nor use-specific. Only in certain cases does a name of one or more substances/substance categories or a wording with a certain relation to a certain use show up, but this is far from providing “substance- and use-” specific tonnage. Eurostat Prodcom
data as such therefore may not be a regular source for providing tonnage per use data for a specific substance. Nevertheless, it might for certain sectors be worth checking whether data provided in combination with sector-specific knowledge is promising.

Product amounts are reported without any differentiation regarding ingredient substances and uses.

d. A.I.S.E.

Under the Charter for Sustainable Cleaning, products that bear the logo must comply with a number of requirements, one of them being that each substance in a given detergent formulation needs to pass an ‘environmental safety check’ (ESC). The ESC is a simple, practical and conservative risk assessment for aquatic toxicity, due to ‘down the drain’ aspect of A.I.S.E. products. It is based on a tiered method with a possibility for refinement of hazard, volume or exposure data. The ESC can be applied to: laundry detergents, fabric conditioners, automatic dishwashing, cleaners (all purpose and spray), hand dishwashing, toilet cleaners, and professional building care.

For background tonnage, data are gathered where possible and if available from e.g. published risk assessments (EU, OECD etc), EU studies and market research sources. The tool has conservative built-in assumptions and projections for detergent uses.

The figures from different sources are consolidated and subject to A.I.S.E Working Group expert judgment to derive a Factor which then projects background tonnage to an inflated, conservative value which also allows scope for future growth.

e. CEPE

CEPE and national associations of formulators have worked since the 1990s to get a clear picture of where and how coatings and associated products are used (industrial / professional / consumer use; solventborne / waterborne / powder formulations; contained conditions or wide dispersive use). This work is endorsed by market surveys and by other statistical efforts (e.g. records for division of cost for collection of emptied containers in specific segments).

Technical committees (and member companies) have an idea which critical substances are used for which purpose, whether they might be replaced or whether they can be appropriately controlled (use in coatings covers approx. 4,000 substances including monomers mainly consumed for resin synthesis). To a certain extent, based on existing knowledge, formulators can help to establish the link between substance manufacturing and end-use and help to identify the really critical compounds.

Tonnage data are real per group of substances, not for individual substances. Data refer to a reference year and can be extrapolated based on economic performance figures. Figures are based on statistics, analyses and additional investigation, consolidated by expert judgement and validated by third parties and competent authority. There are different aggregation levels (starting very detailed per segment and product type). Tonnage data are differentiated per use inside the EU and certain Member States.

f. Nordic Product Registers

The Nordic product registers are central registers that keep information on chemical substances and products on function, industrial category, classification, composition, quantity etc. Data in the registers may be used as support for risk assessments, statistical calculations, substance flow analyses and supervision activities.
Of the Nordic product registers, the Danish and Swedish ones contain information on the largest numbers of products and the highest proportion of products on the market. In Sweden, the declaration requirements are based on the customs tariff codes, so that as a general rule, they apply to all chemical products (substances and mixtures). The Swedish register therefore contains more products than those that are classified as dangerous according to EU legislation. In Norway, declaration is mandatory for all classified products, including consumer products. These regulations implement EU directives on the classification, labelling, etc. of chemicals in Norwegian legislation. The requirements for declaration to the Finnish and Danish product registers are also based on these directives (in Denmark, declaration is limited to dangerous products for business use), but there are additional extensive national rules for declaration. In Finland these additional requirements for example apply to pesticides and chemicals that cause danger although they are not classified, and in Denmark they apply to chemicals that cause danger although they are not classified, and solvents, pesticides and biocides.

Real tonnages per formulated product and per substance are to be found in the registers.

To the best of its knowledge, the TF believes that “uses” would not be available in the Nordic Registers and that custom tariff codes would not be enough accurate/specific for fitting the purposes of “tonnage per use” tracking under REACH.

g. FEICA

FEICA method uses a combination of the statistics on the use of adhesives and sealants in the EU and the results of a survey conducted among the members (companies’ experts) of the association of the European adhesives and sealants makers. This survey establishes broad and generic compositions of adhesives and sealants in terms of ingredient types, and worst case rates adhesive and sealant use and manufacturing. Hence, these estimates represent the state of the art of the European market.

They are the fact-basis for the use-rates of adhesive/sealant ingredients. In order to arrive at tonnages for a substance, this needs to be complemented by the registrant with concrete information/assumptions about the market of his substance in the adhesive/sealant sector.

The method was developed to support registrants in the process of registering their substances as adhesive/sealant ingredients, as preparedness for the REACH 2018 deadline. The tonnage estimates obtained by applying this methodology are likely to overestimate the real tonnages. This is because the generic compositions were defined such that the concentrations per ingredient type are approximated to represent the >90thile. The same is true for the rates at which adhesives / sealants are manufactured and used. Hence the method results in conservative tonnage estimates. This qualifies the method for use as lower tier tonnage estimation.

The method uses a combination of statistics and analyses (via expert survey) to establish a fact-basis for the use-quantities of adhesive/sealant ingredients. In order to arrive at tonnages for a substance, this needs to be complemented by the registrant with concrete information/assumptions about the market of his substance in the adhesive/sealant sector.

h. Reconsile

Generic tonnages, across all applications/uses for all the substances, for REACH registration annexes (annexes VII – X) have been set up based on use pattern, market sector and tonnage information collected from Reconsile members (REACH consortium of manufacturers of silanes and siloxanes).

The generic method was set up to i) protect company specific data in joint CSR preparation and avoid
associated confidentiality issues, and ii) save time taken to decide and/or generate generic tonnage each time uses for each substance are considered. The method used for collection of use and tonnage information has evolved from REACH Phase 1 (registered in 2010) substances to the current Phase 3 (to be registered in 2018) substances.

Questionnaires were sent to members for each substance being registered. They were sent in two separate parts, based on Annex requirements of REACH. Uses of substances and actual tonnage data were provided in the form of questionnaires sent to Reconsile members for each substance. The identified uses can then be classified into the generic uses and lifecycle stages. The generic tonnage per use or lifecycle stage was set up based on consideration of tonnage bands for the relevant REACH annexes, information from questionnaire responses, understanding of use pattern (based on information in Reconsile generic exposure scenario documents) and assumptions on worst case tonnages per use and/or lifecycle stage. The generic tonnage is used for the exposure assessment of each use. This is however, compared with specific tonnage information collected from registrants, to ensure that the generic data still covers the worst case.

i. Concawe

The EU Commission SVHC Roadmap states that there is a need to develop a method to assess the petroleum streams (method 2013-2015, systematic assessment from 2016). The 2010 REACH registration dossiers for Petroleum Substances contain “tonnage per use” per Category whilst regulatory processes (e.g. SVHC assessment) take place at substance level. Therefore, in July 2014 Concawe sent questionnaires to all registrants of Petroleum Substances, requesting information on “tonnage per use per substance per legal entity for the year 2013”.

The tonnages are aggregated per substance before sharing outside Concawe to protect the confidentiality of the information.

\[\text{\footnotesize 7 A Category is a group of substances with similar properties} \]

\[\text{\footnotesize 8 2013 data are considered historical and can be used without infringing competition law, according Concawe lawyers} \]
Annex 2: Questionnaire sent to retrieve Tonnage per use Methods

Questionnaire
Tonnage V4 - 12 June